Make your own free website on Tripod.com
Home
Carga Eléctrica
Ley de Coulomb
Campo Eléctrico
Dipolo eléctrico
Flujo Eléctrico
Ley de Gauss
Conductores
Voltaje
Potencial Eléctrico
Electrón Volt
Capacitancia
Corriente Eléctrica
Resistencia Eléctrica
Ley de Ohm
Potencia Eléctrica
Circuitos Eléctricos
Leyes de Kirchhoff
Campo Magnético
Lorentz
Momentos
Biot-Savart
Ampere
Flujo Magnético
Ley de Faraday
Ley de Lenz
Descargas
Electricidad y Magnetismo

Ley de Gauss

gauss.jpg

Esta ley puede interpretarse, en electrostática, entendiendo el flujo como una medida del número de líneas de campo que atraviesan la superficie en cuestión. Para una carga puntual es evidente que este número es constante si la carga está contenida por la superficie y es nulo si esta fuera (ya que hay el mismo número de líneas que entran como que salen). Además, al ser la densidad de líneas proporcionales a la magnitud de la carga, resulta que este flujo es proporcional a la carga, si está encerrada, o nulo, si no lo está.
Cuando tenemos una distribución de cargas, por el principio de superposición, sólo tendremos que considerar las cargas interiores, resultando la ley de Gauss.
Sin embargo, aunque esta ley se deduce de la ley de Coulomb, es más general que ella, ya que se trata de una ley universal, válida en situaciones no electrostáticas en las que la ley de Coulomb no es aplicable.
 

Su forma integral utilizada en el caso de una distribución extensa de carga puede escribirse de la manera siguiente:

\Phi = \oint_S \vec{E} \cdot d\vec{A}  = {1 \over \epsilon_o} \int_V \rho\ dV = \frac{Q_A}{\epsilon_o}

donde Φ es el flujo eléctrico, \vec{E} es el campo eléctrico, d\vec{A} es un elemento diferencial del área A sobre la cual se realiza la integral,  QA  es la carga total encerrada dentro del área A, ρ es la densidad de carga en un punto de V y εo es la permitividad eléctrica del vacío.

Esta ley puede interpretarse, en electrostática, entendiendo el flujo como una medida del número de líneas de campo que atraviesan la superficie en cuestión. Para una carga puntual es evidente que este número es constante si la carga está contenida por la superficie y es nulo si esta fuera (ya que hay el mismo número de líneas que entran como que salen). Además, al ser la densidad de líneas proporcionales a la magnitud de la carga, resulta que este flujo es proporcional a la carga, si está encerrada, o nulo, si no lo está.

Sección de Ejercicios
Pink Marble Bouncing Left Arrow 4

Ejemplo 1:
ej.1.11.jpg

Ejemplo 2:
ej2.15.jpg

derive6.jpg
Series de Ejercicios Completas
La series de ejercicios se encuentran disponibles en formato dfw para derive 5.0 o posterior.
Para descargar derive 6.1 da click en la imagen de la derecha, para descargar las series de ejercicios da click abajo:

Rotating